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Optical Fibers with Coupled Dispersive Modes

RICHARD STEINBERG

Abstrac&Marcuse’s coupled-power theory incorporates the
effect of different modal group velocities as the only mechanism
responsible for pulse broadening in multimode, imperfect, optical
fibers. In this paper the earlier theory is generalized to include
the bandwidth-dependent effects: material dispersion and the
wave@de dispersion that occurs within each mode. It is predicted

that the latter two effects may partially cancel one another, the
degree of cancellation depending on the shape of the fiber’s re-

fractive-index profile. @ether this effect causes a significant re-

duction in the calculated pulsewidth is shown to depend on the
amount of mode coupliig.

I. INTRODUCTION

CONSIDERATION of waveguide dispersion in multi-

mode fibers has previously been given only to the

case of uncoupled modes [1]. For the entire class of

refractive-index profiles given by (33), it has been shown

that there is no profile shape for which waveguide disper-

sion is significant.

Previous analyses of fibers with mode coupling caused

by small, random, physical imperfections have shown

that the optical power propagates at an average of the

individual modal group velocities, and that the corre-

sponding multimode time dispersion may be less than

for a physically perfect fiber [2]. This desirable aspect

of mode coupling is characterized by an “improvement

factor” [3] that measures the ratio of the pulsewidth in

the distorted fiber to that in a perfect one, assuming

highly monochromatic excitation.

In this paper it is assumed that the excitation is wide

band, and the earlier theory is generalized to include

bandwidth-dependent effects: the waveguide dispersion

that occurs within each mode and the bulk material

dispersion. It is shown that the latter two effects deter-

mine a single dispersion parameter, the effect of which

adds to that of multimode dispersion in rms fashion. This

parameter is formed as the difference of the bulk material

dispersion index and an average of the modal waveguide

dkpersion indices, so that the bandwidth-dependent

dispersions partially cancel one another. Whether thk

effect causes a significant reduction in the calculated

pulsewidth is shown to depend on the amount of mode

coupling.

II. BACKGROUND

The propagation of temporally incoherent light in a

physically imperfect multimode waveguide has been

studied by means of coupled-mode theory. The modal
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fields S,(r) exp [j(cot

harmonic solutions of
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– P,z) ] are the simplest time-

the sourceless Maxwell’s equations

that satisfy the boundary conditions imposed ‘by the

waveguide. The most general time-harmonic field E ( r,z ;u) .

exp (jut)guided by the fiber can be resolved uniquely

as a linear superposition of the mode fields

where factors exp (jc.d) are suppressed. In the absence of

physical imperfections, 1, exp (j/3,z) is independent of the

axial coordinate z.

More generally, the fiber may have a small physical

imperfection; the mode amplitudes may then be shown to

satisfy a system of equations of the following form [3]:

(2)

where the function ~(.z) is the actual physical imperfection.

When the imperfections are numerous and i-regular in

occurrence, j(z) is taken as a random process. For example,

~(z) might represent a random deviation of the fiber’s

radius from some average value.

Several successful treatments of this problem, both

formal [3] and exact [4], [5] have recently appeared.

Rather than attempting to solve (2) dlrectl y, each of

these treatments has as its initial objective the reformula-

tion of the random equations (2) as a set of deterministic

equations on the second-order statistics of the mode ampli-

tudes. For example, defining mode powers P,

P,(,z;u) = (1 Ip(z;u) l’). (3)

Marcuse has used (2) to obtain a set of coupled-power

equations [3]

(4)

that describe the evolution of the mode power distribution

P., for continuous-wave excitation. A description of pulse

propagation was obtained by heuristically modifying

(4) [3]

where v. is the group velocity of the vth mode.
Implicit in (5) is the assumption that the mode dis-

persion characteristics can be adequately modeled as

straight lines [6], [7]; in the limit h,~ + O (no mode

coupling), (5) reduces to a description of propagation in

nondispersive guides. Thus (5) may not be appropriate

for wide-band excitation.
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III. MODIFICATION OF THE COUPLED-POWER

EQUATIONS

The derivation of coupled-power equations given in

[3] can be carried over step by step to derive an analogous

set of equations for the covariances of the mode transfer

functions [4], ~6], [7]

IW(Z;OJ,U1) R (I,(z;w + @l)l”*(z;@) ). (6)

When this was done, the following perturbation equation

was obtained, ignoring the frequency dependence of the

coupling [8], [7]:

(7)

defining u, (w,wI) by

B,(@ + WI) = L(m) + a,(ovd (8)

where P,(u) is the propagation constant of the Ah fiber

mode in the absence of coupling.

The solution of (7) for” l;. is related to the average

mode power P, by

P,(z;t)

{/

* dm

[/

* da
=2Re — exp (jw1t) — Ivv(z;kk + Co,col)

~ 27r _w 2T 1}
(9)

where wo is the optical center frequency.

The dispersion relation of each perfect fiber mode is

now given a quadratic approximation

BY(WO+ @) = 0,0 + Au + B,2@2, I @I <<WCJ. (lo)

The coefficients s,0, LI,I, and ,8,2 are functions of WO; they

depend on both the material properties of the bulk fiber

constituents and the fiber geometry [9]. Alternatively,

one may write (10) as

where nj, N,, and V, are referred to, respectively, as the

phase, group, and dispersion indices of the perfect fiber

modes [10]; they may be reIated to the coefficients of

(10) by equating like powers of W.

From (8) and (10)

m.(@o + W.ol) = WL1 + (ZxM + d) /3,2. (12)

With the trial solution

l,y(.z;~o + W,WJ = cB, exp ( –az) (13)

it follows from (7) and (12) that:

{ ( –~ + mvl~l) + @P2(2ti@l + cd) }Bv

= ~ h,,(ll, – l?,). (14)
P

The second-order perturbation solution of (14) with

A2 = O is given in [3], corresponding to the case of dis-
persionless modes. Assuming that the fiber is long enough

to establish the steady-state mode power distribution, the

solution of (14) with I% = O may be written [3]

l,, (z;coO+ ti,ml) = c(wM)B, exp ( –aMz) (15)

c (ti,coJ is determined by the excitation; B, is the steady-

state mode power distribution normalized such that

~,B? = 1, and cw is a complex propagation constant

CW(W) = ~o + j(dvo) + Wzaz. (16)

It is now assumed that the effect of nonzero ,& on the

solution for I,. may be taken into account by a first-order

perturbation correction to C2M

C2= CXM+ j(20Jwl + oJ12)& (17)

where

/52 = Z B?&2 = ti/2mc (18)
F

defines both flz and q.

Assuming incoherent excitation, it may be shown that

~.,(();@o + CO,U,) = GJ!4(wJli (W) (19)

where M (u J is the Fourier transform of the intensity

modulation m(t), R. (O — coo) is the power spectrum of the

unmodulated source, and G. is the initial mode power

distribution. It is further assumed that the intensity

modulation and the source spectrum are Gaussian-shaped

P,(O;t) = G,wL(t) = G, exp [– (2t/r)’]

R.(w) = (27r) ‘1’ exp [– (u2/2B?) ]/B.

r.(t) = F–l{R. (OJ– wO) ] = exp [– (BJ)2/2] (20)

corresponding to an incoherent source of relative band

~ = 2 (2) 112BJw

From (13) and (19)

C(ao + @,@l) = M(@Jlt(w)kl

where

k, = ~ G,B,.
v

From (9), (13), (16), (17), and (21)

P,(z;t) = ?cIB, exp ( –aOz) .2 Re {W(.z;t – ,z/vO) ] (22)

where

W(.z;t) = ~m ~ exp (jcd) {M(~) r,(2P2uz)
o

.exp [—u2(cw +j~2)z]~.

(21)

It maybe shown from (20) and (22) that

P.(2;t) =
()

~ lCIBV exp ( – aoz) exp

where

T = ( TM2 + g2Z2) 1/2.

()t–2/?)0 2—
T/2

(23)

(24)
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Tiw accounts for multimode dispersion, and is given by [3]
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V. CONCLUSIONS

Tiw = (TZ + 16CUZ)112. (25)

Equations (23) – (25) with F = O yield the solution of

[3]; s accounts for both the material and waveguide

dispersion, and is given by

It is seen that each modal dispersion index q, is weighted

by the square of the corresponding mode power in forming

the average.

IV. PULSE SPREADING IN FIBERS WITH

COUPLED DISPERSIVE MODES

Equations (24), (26), and (47) yield the following

expression for the overall pulsewidth T:

T = [TM2 + (TD – TWG)2]112 (27)

where TD is the dielectric dispersion

TD = .&Jc (28)

and

Tw~ =
%%%)(%) ‘2’)

Marcuse’s pukewidth Tiw, modified by Personick [15]

to include the effect of dielectric dispersion, yields

Tp = (Tti + TD2) 112.

It follows that the percentage error incurred in neglecting

the waveguide dispersion is given by

()T–Tp
error = 100 x ——————

T“

It is now assumed that

(30)

TM = RTiMIw, R <1.0 (31)

where R is the improvement factor [3] in pulsewidth

due to mode coupling, and TM ~ is the multimode dis-

persion in perfect fibers [11]

()NOZA a – 2
TMM=— — CY>2 (32)

c CI+2 ‘

calculated as the difference in the propagation times of

the fastest and slowest modes.

The relative importance of waveguide dispersion for

various fiber parameters may be inferred from Table I,

which was calculated from (27) – (32) and (40), assuming

also that 8 = 0.04, and z = 1 km.

TABLE I

ERROR INCUERSD IN NEGIACCTING WAVEGUIDE DIBPEEhlON

(R,A) a! 2351OM

(0.5, o. 005) % error O 3 3
(o. 1, 0.005) % error li 2?
(0.1, 0.010) % error ; i :? 19 16

It has been found that taking waveguide dkpersion

into account may appreciably improve the fiber’s calcu-

lated impulse response if the following two cor ditions are

both satisfied.

1) The refractive-index distribution is such that multi-

mode dispersion would predominate in the absence of

mode coupling.

2) The mode coupling is sufficiently strong; to reduce

multimode dispersion to the level of dielectric dispersion.

APPENDIX

DISPERSION INDICES OF GRADIENT-INDEX

FIBERS

For the class of index profiles given by [11]

1
no[l — 2A (r/a) ‘i]112, r<a

n(r) =

no(l — ZA) 1/2, r>a

it follows from [10] that:

‘~=no{l+At%)(v’1’)”’(”+
“’=-An0(i%)t5+(v’M)a’(”+

(33)

(34)

a > 2(35)

ff>2

(36)

where M is the total number of propagating modes, and

the superscript O indicates that (34) –(36) are derived

subject to the assumption that the bulk dielectric is

nondispersive

Assuming instead of (37) that [12]

& [n(r)/no] = O

it is possible to writel

(37)

(38)

{

[1 – 2A(r/a) “]’12, r<a

x
(1 – 2A) 1/2, r > a (39)

analogous to (11). The three numbers (no, No,vo) charac-
terize the dispersive properties of the bulk diel~ctric; e.g.,

[9],

no A 1.45 NO ~ 1.47 VO~ 0.025 (40)

1 It may be noted that (37) and (38) are equivalent only if no =

N, and ~, = O; otherwise (38) is more general.
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for fused silicaath = 0.8~m.

Subject to (38) theresultsof [lO]may be extended to

show that

n, = %,0

N, = (NIJ/nl))N:

l?rom (43) and (34)-(36)

()

2C2
TV & q. — Ano —

a+z

7), = ~,o — (%”l)e-l)N’+(aN’

()a—2

-2 (v/M) ”/(a+2).

(41)

(42)

(43)

(44)

It may be noted that for step-index

(42) and (44) become

N, = No{l + A(v/M) )

7, = 70 – 2Ano (v/M)

in agreement with [9, eqs. (15), (20)].

fibers (a = ~ )

One may gain the impression that each of the M pro-

pagating modes has a dHferent set of parameters (n., N,,

m); however,, this is not the case. As a result of mode
degeneracies, v is actually restricted to certain particular

values, each of which corresponds to a group [13] of

W(v) modes with the same indices (n,,N,,v,). Utilizing

the results of [14], it may be shown that the allowed

values of v are given by the squared integers: 4,9,16,””” ,M,

and that

w(v) + 2V112. (45)

Assuming that for sufficiently long fibers the power

distributes itself equally among the modes

B: = I/M. (46)

From (26) and (44)-(46)

a >2. (47)

Expressions analogous to (34) – (36) and (47) applicable

to parabolic and near-parabolic profiles have not been

given, as it maybe shown that their waveguide dispersion

is always negligible.
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