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Optical Fibers with Coupled Dispersive Modes

RICHARD STEINBERG

Abstract—Marcuse’s coupled-power theory incorporates the
effect of different modal group velocities as the only mechanism
responsible for pulse broadening in multimode, imperfect, optical
fibers. In this paper the earlier theory is generalized to include
the bandwidth-dependent effects: material dispersion and the
waveguide dispersion that occurs within each mode. It is predicted
that the latter two effects may partiaily cancel one another, the
degree of cancellation depending on the shape of the fiber’s re-
fractive-index profile. Whether this effect causes a significant re-
duction in the calculated pulsewidth is shown to depend on the
amount of mode coupling.

I. INTRODUCTION

ONSIDERATION of waveguide dispersion in multi-
mode fibers has previously been given only to the
case of uncoupled modes [1]. For the entire class of
refractive-index profiles given by (33), it has been shown
that there is no profile shape for which waveguide disper-
sion is significant.

Previous analyses of fibers with mode coupling caused
by small, random, physical imperfections have shown
that the optical power propagates at an average of the
individual modal group velocities, and that the corre-
sponding multimode time dispersion may be less than
for a physically perfect fiber [2]. This desirable aspect
of mode coupling is characterized by an ‘“improvement
factor’” [3] that measures the ratio of the pulsewidth in
the distorted fiber to that in a perfect one, assuming
highly monochromatic excitation.

In this paper it is assumed that the excitation is wide
band, and the earlier theory is generalized to include
bandwidth-dependent effects: the waveguide dispersion
that occurs within each mode and the bulk material
dispersion. It is shown that the latter two effects deter-
mine a single dispersion parameter, the effect of which
adds to that of multimode dispersion in rms fashion. This
parameter is formed as the difference of the bulk material
dispersion index and an average of the modal waveguide
dispersion indices, so that the bandwidth-dependent
dispersions partially cancel one another. Whether this
effect causes a significant reduction in the calculated
pulsewidth is shown to depend on the amount of mode
coupling.

II. BACKGROUND

The propagation of temporally ineoherent light in a
physically imperfect multimode waveguide has been
studied by means of coupled-mode theory. The modal

Manuscript received September 3, 1974; revised April 4, 1975.
The author is with the Naval Research Laboratory, Washington,
D. C. 20375.

fields &,(r) exp [j(wt — B2) ] are the simplest time-
harmonic solutions of the sourceless Maxwell’s equations
that satisfy the boundary conditions imposed by the
waveguide. The most general time-harmonic field £ (r,z;w) -
exp (jwt) guided by the fiber can be resolved uniquely
as a linear superposition of the mode fields

E(rzw) = 2 1, (2;0)& (1) (1)
where factors exp (jwi) are suppressed. In the absence of
physical imperfections, I, exp (j8,2) is independent of the
axial coordinate z.

More generally, the fiber may have a small physical
imperfection; the mode amplitudes may then be shown to
satisfy a system of equations of the following form [37]:

dl, .
= AL+ X Kuf (@)1,

d 2ad

(2)

where the function f(z) is the actual physical imperfection.
When the imperfections are numerous and i-regular in -
oceurrence, f(z) is taken as a random process. For example,
f(2) might represent a random deviation of the fiber’s
radius from some average value.

Several successful treatments of this problem, both
formal [37] and exact [4], [5] have recently appeared.
Rather than attempting to solve (2) direetly, each of
these treatments has as its initial objective the reformula-
tion of the random equations (2) as a set of deterministic
equations on the second-order statistics of the mode ampli-
tudes. For example, defining mode powers P,

P,(z;w) = (| I,(z;w) 12). (3)
Marcuse has used (2) to obtain a set of coupled-power
equations [3]

apP,

T = Zhvy(Pp_Pv) (4)

dz
that describe the evolution of the mode power distribution
P,, for continuous-wave excitation. A description of pulse
propagation was obtained by heuristically modifying

(4) 3]

oP, , 1P,

oz w9t 2 hon(Py = P))

#

(5)

where v, is the group velocity of the »th mode. .

. Implicit in (5) is the assumption that the mode dis-
persion characteristics can be adequately modeled as
straight lines [6], [7]; in the limit A,, — 0 (no mode
coupling), (5) reduces to a description of propagation in
nondispersive guides. Thus (5) may not be appropriate
for wide-band excitation.
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III. MODIFICATION OF THE COUPLED-POWER
EQUATIONS

The derivation of coupled-power equations given in
37 can be carried over step by step to derive an analogous
set of equations for the covariances of the mode transfer
functions [4], [6], [7]

Ly (z0,01) = {L(z30 + w1) L* (z0) ). (6)

When this was done, the following perturbation equation
was obtained, ignoring the frequency dependence of the
coupling [8], [7]:

al, | .
d— +]UvIw = Ehw(Imu — Iw) (7)
2 B
defining o, (w,w1) by
Bv(w + wl) = ﬁv(w) + UV("’;"-’I) (8)

where 8,(w) is the propagation constant of the »th fiber
mode in the absence of coupling.

The solution of (7) for I, is related to the average
mode power P, by

P,(z;t)

o0 0 d
= 2 Re {/ dex exp (jant) [[ —wI,,,,(z;wo + w,wl)]}
o 2w —w 2T

9)

where wy is the optical center frequency.
‘The dispersion relation of each perfect fiber mode is
now given a quadratic approximation

B.(wo + @) = B + B + Buaw?, (10)

The coefficients B,0, 841, and B,s are functions of wy; they
depend on both the material properties of the bulk fiber
constituents and the fiber geometry [9]. Alternatively,
one may write (10) as

Bolwy + w) = %O{np + N, (f) + i (w_w) } (11)

where n;, N,, and 7, are referred to, respectively, as the
phase, group, and dispersion indices of the perfect fiber
modes [107]; they may be related to the coefficients of
(10) by equating like powers of w.

From (8) and (10)

Iw]<<w0.

ar(wo + @yw) = wiBn + Low; + wi?)Be. (12)
With the trial solution
1, (z;00 + w,w1) = ¢B, exp (—az) (13)

it follows from (7) and (12) that:
{(—a + jBuwr) + B (2ww; + wi?) } B,
= Z hm(Bn - B,). (14)
. »
The second-order perturbation solution of (14) with

B2 = 0 is given in [3], corresponding to the case of dis-
persionless modes. Assuming that the fiber is long enough
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to establish the steady-state mode power distribution, the

solution of (14) with 8,, = 0 may be written [3]
L,(z;w0 + w,0) = c(w,w)B, exp (—auz) (15)

¢(w,w) is determined by the excitation; B, is the steady-
state mode power distribution normalized such that
S.B.2 =1, and ay is a complex propagation constant

(16)

It is now assumed that the effect of nonzero 8.. on the
solution for I,, may be taken into account by a first-order
perturbation correction to oy

a = ay + 72wy + wi?)Bs

OtM(wl) = oy + j(wl/vo) + wilon.

(17
where

Be = 2 BB = ii/2wec (18)

defines both 8, and 7.
Assuming incoherent exeitation, it may be shown that
I,,(0;w0 4+ w,n) = GM () R(w) (19)

where M (w;) is the Fourier transform of the intensity
modulation m (), R,;(w — wo) is the power spectrum of the
unmodulated source, and G, is the initial mode power
distribution. It is further assumed that the intensity
modulation and the source spectrum are Gaussian-shaped

P,(0;t) = Gm(t) = G, exp [— (2t/7)7]
By(w) = (2m)"* exp [~ («*/2B:*) ]/B,
n(® = FH{Ru(o — )} = exp [~ (Ba)¥/2] (20)
corresponding to an incoherent source of relative band
§ = 2(2)12B,/w.
From (13) and (19)

c(wo + ww1) = M (@) R(w)ky (21)
where
k= Z G.B,.
From (9), (13), (16), (17), and (21)
P,(z;t) = kB, exp (—az) -2 Re {W(z;t — 2/v0)}  (22)

where
W) = [ 52 exp (jot) (M () (2Boe)
i) m

-exp [—o?(oe + jBe)2]}.
It may be shown from (20) and (22) that

Pv(Z,'t) = (%) kB, exp (—aoz) exp [_ (t ;1/22/2)())2}

(23)

where

T = (T + 52%2)Y2, (24)
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T s accounts for multimode dispersion, and is given by [3]
Tau = (v 4 16a0z) V2. (25)

Equations (23)-(25) with § = 0 yield the solution of
[8]; § accounts for both the material and waveguide
dispersion, and is given by

§ = éi/c = (8/c) 3 B, (26)
It is seen that each modal dispersion index 7, is weighted
by the square of the corresponding mode power in forming
the average.

IV. PULSE SPREADING IN FIBERS WITH
COUPLED DISPERSIVE MODES

Equations (24), (26), and (47) yield the following
expression for the overall pulsewidth 7T':

T=[Tw+ (I'p — Twe)2 ]2 (27)
where Tp is the dielectrie dispersion
To = Za‘f)g/c (28)
and
20MpA o a— 2
Twa = . 2
YT <a+1><a+2> 29

Marcuse’s pulsewidth T, modified by Personick [15]
to include the effect of dielectric dispersion, yields

T, = (Ta + Tp)'2.

It follows that the percentage error incurred in neglecting
the waveguide dispersion is given by

T—-T
error = 100 X < T ,,> . (30)
It is now assumed that
Ty = RTyun, R <10 (31)

where R is the improvement factor [3] in pulsewidth
due to mode coupling, and Ty is the multimode dis-
persion in perfect fibers [11]

NgzA -2
‘f("‘ ) a>2 (32)

calculated as the difference in the propagation times of
the fastest and slowest modes.

The relative importance of waveguide dispersion for
various fiber parameters may be inferred from Table I,
which was calculated from (27)-(32) and (40), assuming
also that § = 0.04, and z = 1 km.

TABLE I
ErROR INCURRED IN NEGLECTING WAVEGUIDE DISPERSION
(R,A) @ 2 3 5 10 ©
(0.5, 0.005) 9%, error 0 3 3 2 2
(0.1, 0.005) % error 0 5 10 16 21
(0.1, 0.010) % error 0 9 17 19 16
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V. CONCLUSIONS

It has been found that taking waveguide dispersion
into account may appreciably improve the fiber’s calcu-
lated impulse response if the following two corditions are
both satisfied.

1) The refractive-index distribution is such that multi-
mode dispersion would predominate in the absence of
mode coupling.

2) The mode coupling is sufficiently strong to reduce
multimode dispersion to the level of dielectric dispersion.

APPENDIX
DISPERSION INDICES OF GRADIENT-INDEX
FIBERS

For the class of index profiles given by [11]

w1 — 2A(r/a)*JH2, r<a
n(r) =

ng(1l — 2A) 12 r>a (33)

it follows from [107] that:

Y = il — A(y/ M)/} a> 2 (34)
a— 2

NS =n {1 + A ( ) (V/]Vl)“/(“+2>}, a > 2(35)
o+ 2

70 n (a -’> <(¥ "’> ( /114) 1¢ +2)7 a > 2

where M is the total number of propagating modes, and
the superseript 0 indicates that (34)—(36) are derived
subject to the assumption that the bulk dielectric is
nondispersive

dn(r)
do

0. (37)

Assuming instead of (37) that [12]
d
— [n(r) /] =0 (38)
dw

it is possible to write!

2
<°°° + °’>n (riwo + @) = 2 [no 1 No (ﬁ) 4o <3) ]
c c ()} 4t \00g,

[1 — 2A(r/a)=]",

X
r>a (39)

(1 — 24),

analogous to (11). The three numbers (n0,No,70) charac-
terize the dispersive properties of the bulk dielsctric; e.g.,

(91,

ne =145 Ng = 147 no = 0.025 (40)

1Tt may be noted that (37) and (38) are equivalent only if no =
N, and o = 0; otherwise (38) is more general.
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for fused silica at Ay = 0.8 ym.
Subject to (38) the results of [107] may be extended to
show that

(41)
(42)

n, = 0
N, (No/no)NyO

0
m:,,yo_(yﬂ__l)(N” —
Ty Ty

no 0 ‘
1) N + (Z‘V‘() NS (43)
From (43) and (34)-(36)

2c o — 2
== — af (a+2)
n =79 — Ang ( 2) ( 2) (v/M)eletD (44)

It may be noted that for step-index fibers (a@ = «)
(42) and (44) become

N,

No{l + A(y/M)}
7 = no — 2Ane(»/M)

in agreement with [9, egs. (15), (20)].

One may gain the impression that each of the M pro-
pagating modes has a different set of parameters (n,,N,,
n,) ; however, this is not the case. As a result of mode
degeneracies, » is actually restricted to certain particular
values, each of which corresponds to a group [13] of
W (v) modes with the same indices (n,,N,,n,). Utilizing
the results of [14], it may be shown that the allowed
values of v are given by the squared integers: 4,9,16,- - -, M,
and that

W) = 2512,

Assuming that for sufficiently long fibers the power
distributes itself equally among the modes

B2=1/M.
From (26) and (44)-(46)

(46)

> 5 ()
at+ 1/ \a+2/’

Z W(V)nv = 99 — A’I’L()(
=49,
a > 2.

—
"M,
(47)
Expressions analogous to (34)—(36) and (47) applicable

(45)
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to parabolic and near-parabolic profiles have not been
given, as it may be shown that their waveguide dispersion
is always negligible.
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